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Figure 1. Our method provides three style high-fidelity and edited face animation: training-free FACC, training-based FACC and FACC
with conditional control. Compared with Animatediff[6] or its motion module in different resolutions, FACC shows priority on the facial
fidelity, text-to-image editability and video motion. MM stands for motion module, 64, 32, and 16 represent resolutions of 64x64, 32x32
and 16x16 respectively. T2I wo MM is the theoretical performance ceiling for facial fidelity and editing abality.

Abstract

Over recent years, diffusion models have facilitated sig-
nificant advancements in video generation. Yet, the creation
of face-related videos still confronts issues such as low fa-
cial fidelity, lack of frame consistency, limited editability
and uncontrollable human poses. To address these chal-
lenges, we introduce a facial animation generation method
that enhances both face identity fidelity and editing capa-
bilities while ensuring frame consistency. This approach in-
corporates the concept of an anchor frame to counteract the
degradation of generative ability in original text-to-image
models when incorporating a motion module. We pro-
pose two strategies towards this objective: training-free and
training-based anchor frame methods. Our method’s effi-
cacy has been validated on multiple representative Dream-
Booth and LoRA models, delivering substantial improve-

ments over the original outcomes in terms of facial fidelity,
text-to-image editability, and video motion. Moreover, we
introduce conditional control using a 3D parametric face
model to capture accurate facial movements and expres-
sions. This solution augments the creative possibilities for
facial animation generation through the integration of mul-
tiple control signals. For additional samples, please visit
our anonymous project page.

1. Introduction

With the breakthrough development of deep learning and ar-
tificial intelligence, video generation technology has made
significant progress in recent years. In particular, methods
based on diffusion models have brought new opportunities
to the field of video generation. Among these, facial anima-
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Figure 2. Comparison of face similarity and text to image clip sim-
ilarity with motion module in different resolutions and our meth-
ods

tion generation, as an important branch of computer vision
research, has attracted widespread attention due to its rich
application scenarios, such as film production, virtual real-
ity, and social media. High-quality facial animation gen-
eration needs to satisfy requirements of realism, expressive
details, and ease of editing and control.

Figure 3. Visualization for Observation 2: Averaged attention
maps from Temporal attention Module of each pixel. The model
always attends to features of the same frame, causing the activa-
tion of a single column in the heat map.

Despite this, a series of challenges still remain in high-
quality facial animation generation, including realism, fi-
delity, and expressive detail. For example, although tra-
ditional face-swapping methods (such as Deepfakes[15])
can achieve a certain degree of realism, they are limited

in terms of expression details and diversity, and they often
struggle to maintain the fidelity of face identity with oc-
clusions and pose changes. Also, their processing scope
is limited to the facial area, making it impossible to effec-
tively edit non-facial regions, thus reducing the creativity
and editability of facial animation generation. Considering
about creativity and editing of images or videos, the dif-
fusion model, which has been particularly popular recently
and has strong performance, comes to our mind. To our
knowledge, the most popular and outstanding face or por-
trait video generation model based on the diffusion model
is perhaps AnimateDiff[6]. The authors proposed a frame-
work for extending any customized text-to-image model
for animation generation, which can generate correspond-
ing animation clips while maintaining the image style of
the original customized model.

Figure 4. Visualization for Observation 3: Difference between
T2I and T2V generated samples from same Gaussian noise start.
Training for coherent frames will result in a simpler background
and details.

We have three observations about the motion module
of Animatediff[6] which inserted in the Stable Diffusion
Model for video generation. Observation 1: You can’t
have your cake and eat it too. Motion Module dis-
rupts the generative ability of the original text-to-image
model. AnimateDiff[6] inserts a motion modeling module
into each resolution of the text-to-image model. We found
that the deep motion module disrupts the generative ability
of the original text-to-image model. As shown in Figure
1, as the layers deepen, the facial fidelity and editability
of the model deteriorate, especially at the 16x16 and 8x8
stages. Figure 2 further quantifies the facial fidelity and
editability of Animatediff, demonstrating a significant im-
provement when the deep motion model is discarded in the
low resolution of latent. On the other hand, as motion mod-
ule insert in the low resolution, the inter-frame continuity
of video generation gradually strengthens. This raises the



question: Is it possible to maximize the facial fidelity and
editability to approach that of the text-to-image model with-
out losing inter-frame continuity? Observation 2: Keep
an eye on the person ahead, makes the line move fast
instead. Motion Module tends to align with the middle
frame in the early stages of denoising. As shown in Fig-
ure 3, we performed a visualization analysis of the temporal
attention score maps and found that the model aligns with
the middle frame already at timesteps 15. This reminds us
that explicit modeling consistency to the anchor frame may
help the model work better. Observation 3: The shortest
distance between two points is a straight line. Training
for consistency frames makes generalized background
simple and boring. In order to meet the consistency con-
straints for frames, the model has a certain probability of
favoring simpler backgrounds. As shown in Figure 4, we
provided the prompt “with street background” and “with
indoor background” independently, the original T2I model
tends to generate complex street scenes and indoor scenes,
while AnimateDiff[6] has an obviously higher probability
of generating a simple wall and pure background.

In this work, we propose a novel facial animation gen-
eration scheme aimed at achieving realistic, smooth, high-
fidelity, and richly detailed facial animations while enhanc-
ing the generation and editing capabilities of non-facial
regions. We introduce the concept of an Anchor Frame
to avoid the insertion of the motion model damaging the
facial fidelity and editability of the text-to-image model
based on observation 1 and observation 2. We provide
both a training-free Anchor Frame inference method and
a training-based Anchor Frame inference method. Both
the training-free method and training-based method can im-
prove both facial fidelity and editing capabilities by mod-
eling the consistency with the anchor frame in the training
process. Besides, in terms of facial fidelity and details, we
introduce a conditional control using a 3D parametric face
model to make the capture of facial movements and expres-
sions more accurate.

To validate the effectiveness of the proposed method,
we evaluate our AnimateDiff[6] on several representa-
tive DreamBooth and LoRA models about realistic pho-
tographs. Whether it’s facial fidelity, text-to-image ed-
itability, or video motion, we have significantly improved
compared to the original results. Additionally, we support
combined conditional control generation and long-sequence
video generation options, thus providing a broader creative
space for facial animation generation.

The main contributions of this paper are as follows:
• We propose a novel facial animation generation method

that aims to generate realistic, smooth, high-fidelity, and
richly detailed facial animation while enhancing the gen-
eration and editing capabilities of non-facial regions.
We introduce the training-free and training-based anchor

frame method, which both counteract potential issues
where the motion model might damage the facial fidelity
and editability of the text-to-image model.

• We introduce a conditional control using a 3D paramet-
ric face model, making the capture of facial movements
and expressions more accurate. Additionally, we sup-
port combined conditional control generation and long-
sequence video generation options, thereby providing a
broader creative space for facial animation generation.

• We validate the effectiveness of our proposed method on
multiple representative DreamBooth and LoRA models,
and we have made significant improvements compared
to the original results in terms of facial fidelity, text-to-
image editability, or video motion.

2. Related work

2.1. Conditioned Video Generation with Diffusion
Models

Video Diffusion Models (VDM)[8] first extended the
DDPM[7] models initially used for text-to-image genera-
tion, utilizing a factorized space-time U-Net to execute tem-
poral attention based on the Text-to-Image (T2I) model.
Then it becomes common to extend a T2I model with tem-
poral structures for video generation. Animatediff[6] inserts
motion modules into the U-Net to learn appropriate motion
priors given textual descriptions. In addition, personalized
generation can be achieved in Animatediff[6] by modifying
the T2I model from base model (e.g., Stable Diffusion[19])
to personalized models, such as DreamBooth[20] (utilizing
a rare string) and Lora[9] (fine-tuning weights’ residuals via
low-rank decomposition).

However, text descriptions often struggle to accurately
represent complex motion. To enhance motion control
within videos, some methods incorporate pose (e.g., Fol-
low Your Pose[12]) or trajectories (e.g., DragNUWA[26])
to facilitate continuous video control. As a variety of condi-
tions emerge, several works aim to develop frameworks that
accommodate these diverse guidance. VideoComposer[23]
suggests categorizing conditions into three types (textual,
spatial, and temporal) and employing condition fusion to
leverage different control signals for collective guidance.
Some works on image generation have also accomplished
similar tasks. ControlNet[29] employs a trainable copy of
the initial neural network block with zero convolution lay-
ers, which receives extra conditions as input and adds the
output to the original result. T2I-Adapter[14] designs a sim-
ple adapter to extract multi-scale condition features. These
methods can assist to synthesize videos since a T2I model
can be extended to a Text-to-Video (T2V) model as previ-
ously mentioned.



2.2. Face Generation with Diffusion Model

Recently, diffusion models have been gradually ap-
plied to the highly practical domain of the human
face. DiffSwap[30] firstly leverages the conditional in-
paiting capability of diffusion models to perform face
swapping task.To generate customized human portrait,
MagiCapture[11] follows DreamBooth[20] to allocate spe-
cial tokens for both source face and reference style, achiev-
ing disentanglement between face and background. Re-
cent efforts have been increasingly focused on develop-
ing methodologies for generating animatable 3D-aware hu-
man facial models. Text2Control3D[10] leverages diffusion
models with controlnet[29] to generate multi-view face im-
ages, and then use these images to construct neural implicit
field. Following DreamFusion[17], FDNeRF[27] designs
a diffusion loss to optimize the latent code representing a
face, achieving a controllable prompt-driven face editing re-
sult. DreamFace[28] generates animatable 3D face through
three key steps: geometry generation, physically-based tex-
ture diffusion, and animation empowerment.

3. Method
As shown in Figure 5, our method includes a frozen Text-to-
Image diffusion model (T2I model)., a Temporal attention
Module, and a Ghost Module. We first give a brief introduc-
tion to video generation from T2I models in 3.1. Training
and inference schemes of our method FAAC are further dis-
cussed in 3.2 and 3.3.

3.1. Preliminary:Video Generation from Text-to-
Image diffusion Models

Diffusion models are generative models that generate sam-
ples that fit the real image distribution, recovering from to-
tally random noise by a reversed denoising process. The
forward process of diffusion models can be described as:
qt(xt|x0) = N (xt|α(t)x0, β(t)I), where x0 is a sample
from original image distribution and α(t), β(t) are the noise
scheduler weight. By estimating the noise and reversing the
process, we can generate a novel sample by:

pθ(x0:T ) = p(xT )
T∏

t=1

pθ(xt−1|xt)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σθ(xt, t))

(1)

where µθ, σθ is estimated by neural networks θ. The train-
ing objective of the diffusion model is the simple recon-
struction loss:

Lsimple(θ) = ||ϵθ(xt, t)− ϵ||2 (2)

where ϵ is Gaussian random noise injected into a noisy sam-
ple xt by noise scheduler. Due to the success of diffusion

models in capturing realistic images and video priors, there
have been some excellent work of Text-to-Image diffusion
models such as Latent Diffusion Models (LDM)[19]. LDM
works on a lower resolution of latents so that the time ef-
ficiency and generation fidelity are well-balanced. There
are two components in LDM: an autoencoder which en-
codes images and decodes the generated latents into images,
and a normal diffusion model (modified U-Net architecture)
which functions on noisy latents.

The idea of turning image diffusion models into video
diffusion models is very natural. AnimateDiff [6] in-
jects Temporal attention Module into the original LDM U-
Net and trains the Temporal attention Module (cross-frame
pixel-wise attention) on video datasets to generate text-
to-video samples. It multiplexs the original T2I model’s
weight to process each single frame and uses the Temporal
attention Module to get motion priors and objective consis-
tency across frames. Our method followed AnimateDiff’s
architecture to use the Temporal attention Module.

3.2. Anchor Frame Motion Training

To address the disadvantages brought by the Temporal at-
tention Module in Observation 1 and Observation 3, we
propose Anchor Frame Motion Training to solve the prob-
lem.

During training, we randomly choose a frame across all
frames as Anchor Frame for each video batch. We anno-
tate the anchor frame index as k. the noisy latent of Anchor
Frame is sent to the frozen T2I model and the Ghost Mod-
ule. The Ghost Module does not modify any features of An-
chor Frame so the output of predicted noise is the same as
the output of the original frozen T2I model. The only func-
tion of Ghost Module is to send features of Anchor Frame to
attend with features of other frames in the Temporal atten-
tion Module. The noisy latents of other frames are all sent to
the frozen T2I model and Temporal attention Module. We
only fine-tune the Temporal attention Module during train-
ing. The temporal attention can be expressed by:

zi = Attention(QiK
T )V, i ̸= k

Qi = WQzi,K = WKz, V = WV z

z = Cat(z1, z2, ..., zn)

(3)

where zi is the feature of the i-th frame. The feature zk of
Anchor Frame is not changed during the denoising process.
Therefore it can fully utilize the editability and the fidelity
of the T2I model and will not be affected by the perfor-
mance degradation brought about by the motion module.

Due to the domain gap between training data for T2I
models and Temporal attention Module (one is images,
which we can hardly reach, and one is videos), cumula-
tive errors may occur in the denoising process if the train-
ing targets of other frames during training are based on data



Figure 5. Overview. We propose a training method and an inference method for facial video generation. During training, we freeze the
T2I model and train the Temporal attention Module with the help of our Anchor Frame mechanism. During inference, coherent video
samples can be generated simply with our Anchor Frame Inference to get the same editability and fidelity of the original T2I model by the
training-free or training-based approach.

from the video training set, but the anchor frame is not con-
strained. This could lead to a decrease in fidelity and abrupt
alterations in the generated videos.

To tackle this problem, we replace random noise with es-
timated noise from DDIM Inversion for the Anchor Frame.
Therefore the predicted x0 for Anchor Frame will be the
nearly same as the original frame in the training video. The
gap between the two domains can be effectively minimized
by employing this approach, thereby facilitating the training
of more coherent models.

Figure 6. Graph of loss concept. Instead of learning to predict
sampled random noise ϵ, the loss will push the model to learn the
difference between ϵi and ϵi.

Training Objective. Besides replacing the random noise
with estimated noise from DDIM inversion, we redesigned

the training loss (called Anchor Difference Loss) to dimin-
ish the gap instead of the simple reconstruction loss:

Lad =

n∑
i=1,i̸=k

||(ϵθ(xit, t)− ϵθ(xkt , t))− (ϵi − ϵk)||2/n

(4)
where ϵθ(xit, t is the estimated noise from model of frame
i in at time step t and ϵi is the sampled Gaussian noise of
frame i.

The Anchor Difference Loss can decrease the latent gap
between Anchor Frame and other frames, preserving the
fidelity of faces. And the total loss of our training is
L = Lsimple + λLad. We set λ as 1.0 for our experiment.

3.3. Anchor Frame Inference

The inference pipeline is almost the same as the training
procedure, as the anchor frame is generated only from the
T2I model. The original xT of Anchor Frame can also be
generated from any realistic image using DDIM Inversion,
making our model suitable for animating any generated im-
ages or real images.
Training-free.We also discovered that the Temporal atten-
tion Module does not need to be fine-tuned to get quality
results in our experiments. Therefore our inference method



can also be training-free, which is a plug-and-play tool for
facial video generation.
Control signals. Our method is also compatible with con-
trol signals to generate facial videos with certain facial land-
marks, rendered face images from 3D Morphable Models,
canny images, etc. See details in Section 4.2.

4. Experiment

In the experimental section, we firstly present the details of
our training and evaluation in Section 4.1. Subsequently,
in Section 4.2, we elucidate how we integrate FACC with
controllable generation through the utilization of 3D Mor-
phable Model (3DMM)[1]. Following this, we discuss the
qualitative and quantitative results of our method in Section
4.3, 4.4.

4.1. Experimental Detail

Training. We use Stable Diffusion v1.5 as our base text-
to-image model to train the controllable modeling module
of expression and pose and the motion module. We use
1000+ portrait videos as our dataset, the controllable model-
ing module was trained from scratch while the motion mod-
eling module was fine-tuned with Animatediff V2 motion
module. The video clips in the dataset are sampled at the
stride of 1, then resized and center-cropped to the resolu-
tion of 512 × 512, the length of the video clips for training
is set to 16 frames.
Evaluations. To confirm the efficacy and broad applica-
bility of our approach, We use a diverse range of LoRA[9]
collected from Civitai or trained by ourseleves, encompass-
ing various genders, ages, and ethnicities. To enhance real-
ism, following [6], we also colleted a great number of real-
istic photography style DreamBooth[20] from Civitai. Our
pipeline intergrates the base text-to-image model, motion
module, stylized DreamBooth, and personalized LoRA, en-
abling the generation of highly realistic facial animations
for the LoRA characters.

4.2. FACC With Control

Based on our previous observations, Animatediff tends
to prioritize ensuring inter-frame consistency in generated
videos rather than inducing intricate motion. As a result,
the generated video clips frequently display minimal move-
ment in human actions, accompanied by negligible or no
changes in facial expressions. The animation seems like a
camera movement, and even common actions like blinking
and smiling are infrequently observed.

In our pursuit of generating facial videos with more sub-
stantial motion, we leverage the power of T2I-adapter[13].
Similar to ControlNet[29], T2I-adapter is a commonly used
method for controllable image generation given various
conditions, such as pose, sketch, color, etc. Specifically,

T2I-adapter utilizes a trainable Adapter structure to align
internal knowledge in T2I models and external control sig-
nals.

The central focus of our investigation revolves around
identifying a signal conducive to controlling the generation
of facial animations. After careful deliberation and em-
pirical exploration, our choice coalesces around the use of
2D rendering images obtained from a 3D Morphable Model
(3DMM)[1, 3, 5] as a conditional signal to control the gen-
eration of facial animations. Compared to facial landmarks,
face parsing, and canny maps on human faces, using 2D
rendering images of a 3D Morphable Model as condition
offers several advanteages (demonstrated in Figure 7).

Figure 7. The generation effects under different control sig-
nals. It can be seen that the use of canny may result in disorderly
lines that may not be correctly processed by Diffusion, thus fail-
ing to generate a reasonable facial video (the girl’s chin in the first
row). When generating using landmarks, it is sometimes challeng-
ing to accurately control the signal actions. Simultaneously, if the
facial shape generated by the LoRA character differs significantly
from that in the control signal, canny and landmark signal may
lead to a decrease in fidelity. It can be observed that the use of
3DMM for generation has shown improvements in both fidelity
and control accuracy of facial expressions.

Most importantly, we can recombine facial features with
the assit of 3DMM. The 3DMM model enables the extrac-
tion of high-dimensional and fine-grained features such as
pose, shape, expression, texture, and identity from a single
image, condensed them into low-dimensional latent codes.
By incorporating external features, such as the pose and ex-
pression of another individual, with the internal features of
the facial shape, texture, and identity of the person we aim
to generate, we enhance fidelity. Moreover, we can simul-
taneously capture facial features from multiple individuals.
For instance, by incorporating the expression from individ-
ual A, the pose from individual B, and the facial shape and
texture of the target-generated person. Figure 8 illustrates
an example.



Figure 8. Example of pose and expression recombination. It is worth noting that the pose feature also includes mouth features in 3DMM.
Therefore, the party providing the pose feature determines the control signal for the mouth.

4.3. Qualitative Results

We conduct comprehensive evaluation under the same set-
ting to fairly compare the qualitative results between our
method and the AnimateDiff[6] baseline. We collected sev-
eral typical and representative examples, as demonstrated in
Figure 9. It is worth noting the following three aspects:
• Our approach is more in line with the prompt compared

to the baseline. Descriptions incongruent with baseline
samples are highlighted in red.

• Our method exhibits higher fidelity than the baseline. Un-
der the same LoRA conditions, the facial animations gen-
erated by our approach more closely resemble the LoRA
character.

• Compared to the baseline, our approach exhibits a greater
range of motion. If control signals are incorporated, our
samples can generate larger ranges of motion.

4.4. Quantitative Results

In order to comprehensively assess the fidelity, editability,
and the overall quality of the generated facial animations,
we use the following 3 kinds of metrics for qualitative eval-
uation.
Face Similarity Score: we leverage ArcFace[4] to assess
the fidelity. ArcFace is a deep face recognition network
which can extract representative face features through an
Additive Angular Margin Loss. We employed ArcFace to
extract facial embeddings from both the generated facial an-
imations and authentic photographs of the LoRA character.
The cosine similarity was computed to serve as the Face
Similarity Score.
CLIP Score: we utilize the CLIP to assess the text-to-image

editability. Specifically, we compute the CLIP[18] similar-
ity between the prompt input of the diffusion model and the
generated animation images to examine whether the prompt
effectively controls and edits the generation of video con-
tent.

Fréchet Video Distance: following prior works[16, 21,
25], we utilize the Fréchet Video Distance (FVD) [22]
to assess the overall quality of our generated video clips.
FVD initially employs the pretrained I3D video classifica-
tion network[2] to extract feature representations from both
real and synthesized videos. Subsequently, it computes the
Fréchet distance between the distributions of features from
real and synthesized videos. Following [21, 24], we utilize
CelebV-HQ[31] dataset as our real benchmark. And we use
our approach and a baseline to synthesis a large number of
videos under the same set of setting (prompts, DreamBooth,
and LoRA) for fair comparison.

Table 1. Quantitative Comparison

Method Fidelity (↑) Editability (↑) FVD (↓)

AnimateDiff 22.79 29.11 595.45
training-free FACC 28.04 29.48 504.15
training-based FACC 28.24 29.51 523.27

Under the above three metrics, we compare our meth-
ods with AnimateDiff[6]. We observed a significant im-
provement in fidelity, editability, and overall video quality
for both training-free and training-based FACC compared to
AnimateDiff. While the training process may hurt the FVD
metric, it concurrently enhances fidelity and editability.



Figure 9. Qualitative Comparison. Video sequence produced by our method (the second line in each unit) more closely align with the
textual description and the LoRA character compared with the baseline (the first line in each unit).

5. Limitations and Future Works

Despite the promising results achieved by our method, we
also recognize several limitations and potential avenues for
future exploration.

In our anchor frame approach, we observed that the im-
age quality of non-anchor frames is lesser compared to an-
chor frame. The denoising process resembles a chasing
problem: despite striving to match the anchor frame, it
never reaches perfection. Furthermore, in Observation 2,
we mentioned that inserting a motion model at a deep level
into the T2I model results in loss of the original facial fi-
delity and editability provided by the T2I model. However,
our current approach has not yet capitalized on this insight,
marking an area for future investigation.

Another significant aspect of our research accentuates
the importance of conditional control using a 3D parametric
face model. This feature enables us to capture facial move-
ments and expressions more accurately, contributing signif-
icantly to our method’s performance. However, we found
that introducing control signals, such as 3DMM, harms the
original fidelity of the T2I model—a challenge worth con-
tinuing research. Moreover, how to generate control signals
from text is a research topic in anticipation of accomplish-
ing comprehensive fine-motion video generation merely us-
ing text.

Additionally, our current facial fidelity is entirely
sourced from the LoRA model. Exploring other methods
to generate videos of specific ID faces is also a direction for
our future work.

6. Conclusion

In this work, we proposed a novel facial animation gener-
ation approach, using the potential of diffusion models en-
riched with our newly introduced anchor frames and condi-
tional control. Our technique effectively handles previously
observed challenges in fidelity and editability when incor-
porating motion dynamics into Text-to-Image (T2I) models.

The integration of a 3D parametric face model added to
our methodology by providing a more accurate capture of
facial movements and expressions, contributing to the dy-
namic realism and the 3D-consistency of the generated ani-
mations. Furthermore, our method’s capacity for combined
conditional control generation opened up new possibilities
for creative applications.

Our experimental results validated our method’s effec-
tiveness on multiple representative DreamBooth and LoRA
models, showing significant improvements in facial fidelity,
text-to-image editability, and video motion compared to ex-
isting solutions.
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